Abstract

The report on the superconductivity of the two-legged spin ladders BaFe2S3 and BaFe2Se3 has established 123-type iron chalcogenides as a novel subgroup in the iron-based superconductor family and has stimulated the continuous exploration of other iron-based materials with new structures and potentially novel properties. In this paper, we report the systematic study of a new quasi-one-dimensional (1D) iron-based compound, Ba9Fe3Te15, including its synthesis and magnetic properties. The high-pressure synthesized Ba9Fe3Te15 crystallized in a hexagonal structure that mainly consisted of face-sharing FeTe6 octahedral chains running along the c axis, with a lattice constant of a = 10.23668 Å; this led to weak interchain coupling and an enhanced one-dimensionality. The systematic static and dynamic magnetic properties were comprehensively studied experimentally. The dc magnetic susceptibility showed typical 1D antiferromagnetic characteristics, with a Tmax at 190 K followed by a spin glass (SG) state with freezing at Tf ≈ 6.0 K, which were also unambiguously proved by ac susceptibility measurements. Additionally, X-ray magnetic circular dichroism (XMCD) experiments revealed an unexpected orbital moment for Fe2+, i.e., 0.84 μB per Fe in Ba9Fe3Te15. The transport property is electrically insulating, with a thermal activation gap of 0.32 eV. These features mark Ba9Fe3Te15 as an alternative type of iron-based compound, providing a diverse candidate for high-pressure studies in order to pursue some emerging physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.