Abstract

The formation of the first intermediate in ubiquinone-9 biosynthesis, 3-nonaprenyl-4-hydroxybenzoate (NPHB), by the enzyme p-hydroxybenzoate:polyprenyl transferase, has been studied in isolated rat liver mitochondria using solanesol pyrophosphate and p-hydroxybenzoate as the substrates. Phosphate buffer (100 m m) is inhibitory but at 20 m m inhibition is not apparent compared to other buffers at the same concentration. With various buffers at low concentration (20 m m) both EDTA and Mg 2+ stimulate formation of NPHB while Ca 2+ inhibits. Release of Ca 2+ inhibition can be achieved by the addition of Mg 2+, or EDTA, or EGTA, with EGTA being less effective than EDTA. When Mg 2+, Ca 2+, and EDTA are present together, a two- to threefold increase in activity of the enzyme is observed. The antibiotic bacitracin inhibits the synthesis of NPHB and the inhibition is increased when divalent cations are present. EGTA is more effective than EDTA in overcoming inhibition due to bacitracin. The possibility that these effects are partially due to alteration of mitochondrial membrane conformation as well as a direct effect on the enzyme is evaluated. The possible role of polyprenylphosphates in mitochondrial membrane function is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.