Abstract

We have employed an initial combinatorial approach followed by systematic lead optimization to investigate a series of novel molecules that exhibit antimicrobial activity against Gram-negative and Gram-positive bacteria. The new molecules contain various sequences of amino acids, generally l-lysine and glycine, attached to the 1,4,5,8-naphthalenetetracarboxylic diimide aromatic unit. Systematic structure–activity studies found that increasing positive charge enhanced activity and molecules containing one naphthalenetetracarboxylic diimide unit as well as at least seven lysine residues were optimum for antimicrobial activity. The naphthalenetetracarboxylic diimide derivatives were found to be inactive against mammalian cell lines, making them excellent antimicrobial candidates. Our results indicate that combining positive charge with aromatic and/or hydrophobic elements may be an interesting new approach to antimicrobial agents and adds an important new dimension to the field of cationic peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.