Abstract

The structured electrode has the advantages of polymer binder-free, non-precious-metal and without multiple and tedious manual assembly, exhibiting superior electro-catalytic activity for oxygen reduction reactions (ORR), compared with the traditional ink-based electrode. The structured CP/Fe-N-CNFs (Fe and N containing carbon nanofibers (CNFs) in-situ grown on carbon paper (CP)), has been one-step synthesized by chemical vapor deposition (CVD). In this paper, it can be concluded that the structured CP/Fe-N-CNFs with 0.30 at.% Fe-Nx moieties exerts the most positive onset-potential (−0.05 V), peak potential, and largest peak current density. The measured current density of the structured Fe-N-CNFs at −0.8 V is increased by 56.3% compared to that of the traditional Fe-N-CNFs. The traditional Fe-N-CNFs exhibit stronger alkaline tolerance comparing with commercial Pt electrode. That is, the pronounced catalytic activity of the structured Fe-N-CNFs might attribute to the homogeneous and undiluted active sites compared to that of the traditional Fe-N-CNFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.