Abstract

Fused heterocyclic 1,2,4-triazoles have provided much attention due to variety of their interesting biological properties.Aim. To develop the method for the synthesis of novel 2-[(1,2,4-oxadiazol-5-yl)-[1,2,4]triazolo[4,3-a]pyridine-3-yl]acetamides and conduct the biological assessment of the compounds synthesized.Results and discussion. A diverse set of acetamides newly synthesized consists of 32 analogs bearing an 1,2,4-oxadiazole cycle in positions 6, 7 and 8. A convenient scheme of the synthesis starts from commercially available 2-chloropyridine-3-, 2-chloropyridine-4-, 2-chloropyridine-5-carboxylic acids with amidoximes to form the corresponding 2-chloro-[3-R1-1,2,4-oxadiazol-5-yl]pyridines, then follows the reaction of hydrazinolysis with an excess of hydrazine hydrate. The process continues via the ester formation with the pyridine ring closure, then the amide formations of the end products are obtained by hydrolysis into acetic acid.Experimental part. A series of new 2-[6-(1,2,4-oxadiazol-5-yl)-, 2-[7-(1,2,4-oxadiazol-5-yl)-, 2-[8-(1,2,4-oxadiazol-5-yl)-[1,2,4]triazolo[4,3-a]pyridine-3-yl]acetamides were obtained in good yields, and their structures were proven by the method of 1H NMR spectroscopy. The prognosis and study of their pharmacological activity were also conducted.Conclusions. The synthetic approach of obtaining the representatives of 2-[(1,2,4-oxadiazol-5-yl)-[1,2,4]triazolo[4,3-a]pyridine-3-yl]acetamides previously unknown can be used as an applicable method for the synthesis of diverse functionalized [1,2,4]triazolo[4,3-a]pyridine derivatives.

Highlights

  • The synthetic approach of obtaining the representatives of 2-[(1,2,4-oxadiazol-5-yl)-[1,2,4] triazolo[4,3-a]pyridine-3-yl]acetamides previously unknown can be used as an applicable method for the synthesis of diverse functionalized [1,2,4]triazolo[4,3-a]pyridine derivatives

  • Our new target compounds 2-[(1,2,4-oxadiazol5-yl)-[1,2,4]triazolo[4,3-a]pyridine-3-yl]acetamides f1-32, as listed in Tab. 1, were prepared by the following the process presented in Scheme

  • In this study an efficient and convenient approach for the synthesis of new 2-[(1,2,4-oxadiazol5-yl)-[1,2,4]triazolo[4,3-a]pyridine-3-yl]acetamides has been described; it can be used as an applicable method for the synthesis of diverse functionalized [1,2,4]triazolo[4,3-a]pyridine derivatives

Read more

Summary

Results and discussion

A diverse set of acetamides newly synthesized consists of 32 analogs bearing an 1,2,4-oxadiazole cycle in positions 6, 7 and 8. A convenient scheme of the synthesis starts from commercially available 2-chloropyridine-3-, 2-chloropyridine-4-, 2-chloropyridine-5-carboxylic acids with amidoximes to form the corresponding 2-chloro-[3-R1-1,2,4-oxadiazol-5-yl]pyridines, follows the reaction of hydrazinolysis with an excess of hydrazine hydrate. The process continues via the ester formation with the pyridine ring closure, the amide formations of the end products are obtained by hydrolysis into acetic acid. A series of new 2-[6-(1,2,4-oxadiazol-5-yl)-, 2-[7-(1,2,4-oxadiazol-5-yl)-, 2-[8-(1,2,4-oxadiazol-5-yl)-[1,2,4]triazolo[4,3-a]pyridine-3-yl]acetamides were obtained in good yields, and their structures were proven by the method of 1H NMR spectroscopy. The prognosis and study of their pharmacological activity were conducted

Conclusions
Experimental part
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call