Abstract

EGFR mutations are an ongoing challenge in the treatment of NSCLC, and demand continuous updating of EGFR TKI drug candidates. Pyrrolopyrimidines are one group of versatile scaffolds suitable for tailored drug development. However not many precedents of this type of pharmacophore have been investigated in the realm of third generation of covalent EGFR-TKIs. Herein, a series of pyrrolo[2,3-d]pyrimidine derivatives able to block mutant EGFR activity in a covalent manner were synthesized, through optimized Buchwald-Hartwig C-N cross coupling reactions. Their preliminary bioactivity and corresponding inhibitory mechanistic pathways were investigated at molecular and cellular levels. Several compounds exhibited increased biological activity and enhanced selectivity compared to the control compound. Notably, compound 12i selectively inhibits HCC827cells harboring the EGFR activating mutation with up to 493-fold increased efficacy compared to in normal HBE cells. Augmented selectivity was also confirmed by kinase enzymatic assay, with the test compound selectively inhibiting the T790M activating mutant EGFRs (IC50 values of 0.21nM) with up to 104-fold potency compared to the wild-type EGFR (IC50 values of 22nM). Theoretical simulations provide structural evidence of selective kinase inhibitory activity. Thus, this series of pyrrolo[2,3-d]pyrimidine derivatives could serve as a starting point for the development of new EGFR-TKIs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.