Abstract

Photoactive polymer and quantum dots (QDs)/nanocrystals (NCs)-based bulk heterojunction (BHJ) solar cells have the combined positivity of organic semiconductors and inorganic components, which can enable a high carrier mobility and absorption coefficient. Additionally, the NCs also provide the opportunity to tune the band gap to obtain enhanced absorption in a broad solar spectrum. Among the semiconductors, lead chalcogenide NCs are of particular interest due to their good photosensitivity in the near-infrared (NIR) region of the solar spectrum. These NCs have large exciton Bohr radii (18, 46, and 150 nm for PbS, PbSe, and PbTe, respectively) and tunable sizes depending on the optical bandgaps between 0.3 and 1.5 eV. Independently, lead chalcogenide NCs have been studied extensively for different applications; however, uses in polymer-NC-based bulk heterojunction solar cells are limited. This Review has been structured on the lead chalcogenide NCs incorporated in polymer composite-based bulk heterojunction solar cells covering the material, properties, and solar cell performance to find the issues and explore future opportunities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.