Abstract
With the aim to develop polymers with appealing, multifunctional characteristics, a series of polyimides were designed by anchoring 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) units on the main polymer chains containing 1,3,5-triazine and several flexible moieties, such as ether, hexafluoroisopropylidene, or isopropylidene. A detailed study was conducted to establish structure-property correlations, with a focus on the synergistic effectiveness of triazine and DOPO moieties on the overall features of polyimides. The results evidenced good solubility of the polymers in organic solvents, their amorphous nature with short-range regular-packed polymer chains, and high thermal stability with no glass transition temperature below 300 °C. Spectrophotometric measurements revealed the existence of a strong charge transfer complex in these polymers that led to a "black" appearance, which generated broad absorption bands spanning on the overall visible range. Nevertheless, these polymers displayed green light emission associated with 1,3,5-triazine emitter. The electrochemical characteristics of the polyimides in solid state demonstrated their strong n-type doping character induced by three different structural elements with electron-acceptance capability. The useful properties of these polyimides, including optical, thermal, electrochemical, aesthetics, and opaqueness, endow them with several possible applications in the microelectronic field, such as protecting layers for the inner circuits against UV light deterioration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.