Abstract

AbstractTo improve the biocompatibility of AISI 316L, bioactive glass (BG) coating of SiO2–CaO–P2O5 which helps bonding with bone implants was used by an electrophoretic deposition method. Before coating deposition, the samples were treated by shot peening, known as an efficient process for metal grain refinement and fatigue properties. The stainless steel 316L was investigated in terms of microstructure, texture, and roughness. This research covers the effects of chosen shot peening parameter on the BG‐coating properties on the obtained results. Shot peening was carried using two different sets of parameters as conventional shot peening, and severe shot peening. Wettability, roughness, microstructure, coating thickness, and corrosion behavior of coated sample were investigated in terms of potentiodynamic polarization and electrochemical impedance spectroscopy in simulated body fluid (SBF) solutions at 37°C. The results indicated that the coating thickness decreased from 35.5 ± 10 µm for coated not peened (CNP) to 20 ± 5 and 17 ± 2 µm for coated conventionally shot‐peened (CCSP) and coated severely shot‐peened (CSSP), respectively. As well as, the water contact angle of CSSP sample was equal to 15.71° which is much lower than CNP (20.7°). The protection ability of the tested samples in the SBF was improved in the following order: CCSP < CNP < CSSP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call