Abstract

A combination of nanotopography and controlled release is a potential platform for neuronal tissue engineering applications. Previous studies showed that combining both physical and chemical guidance was more effective than individual cues in the directional promotion of neurite outgrowth. Nanotopography can direct human mesenchymal stem cells (hMSCs) into neuronal lineage, while controlled release of neurotrophic factors can deliver temporally controlled biochemical signals. Hypothesizing that the synergistic effect will enhance neuronal lineage commitment of hMSCs, a fabrication method for multiple neurotrophic factors delivery from a single nanopatterned (350 nm gratings), poly-ɛ-caprolactone (PCL) film was developed and evaluated. Our results showed a synergistic effect on hMSC differentiation cultured on substrates with both nanotopographical and biochemical cues. The protein/drug encapsulation into PCL nanopatterned films was first optimized using a hydrophilic model protein, bovine serum albumin. The hydrophobic retinoic acid (RA) molecule was directly incorporated into PCL films. To achieve sustained release, hydrophilic nerve growth factor (NGF) was first encapsulated within polyelectrolyte complexation fibers before they were embedded within the nanopatterned PCL film. Our results showed that nanotopography on the fabricated polymer films remained intact, while release of bioactive RA and NGF was sustained over a period of 3 weeks. Under the combinatorial effect of physical and biochemical cues, we observed an enhanced upregulation of neuronal genes such as microtubule-associated protein 2 (MAP2) and neurofilament light (NFL) as compared with sustained delivery of individual cues and bolus delivery. Quantitative polymerase chain reaction analysis showed that MAP2 and NFL gene upregulation in hMSCs was most pronounced on the nanogratings with sustained release of both RA and NGF. The fabricated platforms supported the sustained delivery of multiple neurotrophins, including both hydrophobic and hydrophilic therapeutic agents, while providing surface patterning versatility for application in neural regeneration and tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.