Abstract

DNA alkylating agents alone or with ionizing radiation have been the preferred conditioning treatment in allogeneic hematopoietic stem cell transplantation (allo-HSCT). In search of less toxic alternatives, we hypothesized that combination of busulfan (Bu), fludarabine (Flu) and clofarabine (Clo) would provide superior efficacy. At low concentrations, these drugs show synergistic cytotoxicity in Bu-resistant AML KBM3/Bu250 6 cells. Similar molecular responses were observed in other AML cell lines and in primary explanted AML cells. The [Clo + Flu + Bu] combination activates an intense DNA damage response through the ATM pathway, leading to cell cycle checkpoint activation and apoptosis. Phosphorylations of SMC1 and SMC3, and methylations of histones 3 and 4, are much more pronounced in cells exposed to [Clo + Flu + Bu] than [Clo + Flu], suggesting their relevance in the efficacy of the triple-drug combination. A possible mechanism for these observed synergistic effects involves the capability of [Clo + Flu] to induce histone methylations and subsequent chromatin remodeling, which may render the genomic DNA more accessible to Bu alkylation. The Bu-mediated DNA cross-linking may provide a feedback loop which perpetuates the DNA damage response initiated by [Clo + Flu] and commits the cells to apoptosis. Our results provide a conceptual mechanistic basis for exploring this triple-drug combination in pretransplant conditioning therapy for allo-HSCT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.