Abstract

AbstractCorrosion protection of steel bars in alkaline concrete environments poses a common challenge in marine engineering. One approach to mitigate steel bar corrosion is the addition of corrosion inhibitors to the concrete. In alkaline environments, the passivation of rebars occurs through anodic passivation coupled with the cathodic oxygen reduction reaction (ORR). The catalysis of ORR can expedite anode passivation. To investigate the corrosion inhibition of steel bars in alkaline environments, meso‐tetra(4‐carboxyphenyl)porphine (TCPP), known for its ORR catalytic properties, is selected. TCPP forms adsorption films on the surface of steel bars, facilitating the formation of passivation films. TCPP primarily adsorbs onto active sites on the surface of the passivation film, where lattice iron ions have leached. The adsorbed TCPP accelerates the formation of the passivation film through ORR catalysis, inhibiting the development of passivation film defects and enhancing the integrity and protection of the passivation film. The most significant effect is observed when the concentration of TCPP is 0.5 mmol/L. The physical adsorption of TCPP is primarily determined by the negative charge centers, namely the carboxyl group O and the pyrrole N. However, due to steric hindrance caused by the unrestricted rotation of the carboxyl benzene, the pyrrole N does not play a dominant role in chemical adsorption. Instead, the active site for chemical adsorption is the carboxyl group O. The adsorption process significantly reduces the diffusion coefficient of TCPP molecules, providing a robust and stable adsorption binding. Phthalocyanine molecules without carboxyl benzene groups adopt a planar structure, allowing them to form stable adsorption configurations on the iron surface through flat adsorption. This observation provides guidance for the design of novel metal phthalocyanine molecules. Specifically, the development of metal phthalocyanine molecules with modifying groups that are coplanar with the phthalocyanine ring and possess restricted rotation can achieve flat adsorption, improve coverage rate, and enhance adsorption configuration stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.