Abstract

Magnesium (Mg) alloys are known to exhibit strong basal texture following large plastic deformation. However, recent experimental studies have revealed that the Mg-Y-Nd-Zr-Gd series alloy displays a weak texture after undergoing 60% compression at 500 °C. The overall deformation texture is similar to that of dynamic recrystallization (DRX) subsets, and the (0001) pole figure of the deformed grain subsets does not concentrate entirely in the compression direction due to the activation of non-basal slip systems. It should be noted that DRX and non-basal slip systems cannot independently account for the final deformation texture. In this case, continuous dynamic recrystallization (CDRX) occurs, where the segregation of rare earth (RE) elements at grain boundaries (GB) impedes the movement of existing GBs and prevents the occurrence of discontinuous dynamic recrystallization (DDRX). Low-angle grain boundaries (LAGB), which are subject to local strain-regulated distribution, continue to absorb dislocations and produce new CDRXed grains. Notably, non-basal slip systems play a role in the generation and subsequent orientation behavior of DRXed grains. As DRX progresses, complex crystal rotations occur on both sides of the newly formed DRX interfaces, causing the orientation of the DRXed grains to gradually deviate from that of the deformed parent grains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call