Abstract

In synaptosomes prepared from dentate gyrus, activation of the metabotropic glutamate receptor by the specific agonist, trans-1-amino-cyclopentyl-1,3-dicarboxylate, increases release of glutamate in the presence of a low concentration of arachidonic acid. A similar interaction between trans-1-amino-cyclopentyl-1,3-dicarboxylate and arachidonic acid is observed on inositol phospholipid turnover and on protein kinase C activity. We report here that when long-term potentiation is induced in the dentate gyrus by high frequency tetanic stimulation to the perforant path, the synergism between arachidonic acid and trans-1-amino-cyclopentyl-1,3-dicarboxylate is occluded. The occlusion of the synergistic action between arachidonic acid and trans-1-amino-cyclopentyl-1,3-dicarboxylate on glutamate release extended to occlusion of the effect in inositol phospholipid turnover and protein kinase C activation in synaptosomes prepared from dentate gyrus in which long-term potentiation was induced in vivo. One interpretation of the results presented here is that tetanic stimulation is followed by stimulation of metabotropic glutamate receptors at a time when arachidonic acid concentration in the synaptic region is elevated, and that this interaction triggers the presynaptic changes required for expression of long-term potentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call