Abstract

In this work the synergism between displacement damage creation and presence of hydrogen isotopes was studied. Tungsten samples were irradiated by 10.8 MeV W ions with or without the presence of D ions with two different energies of 300 eV/D and 1000 eV/D and different temperatures. In order to compare the results obtained with different exposure parameters the samples were afterwards additionally exposed to D ions at 450 K to populate the created defects. By increasing the W irradiation time, ion flux and energy, the increase of D concentration and D retention was observed as measured by nuclear reaction analysis and thermal desorption spectroscopy. By fitting the D depth profiles and D desorption spectra by the rate equation code MHIMS-R we could see that additional fill-levels were populated with higher flux and ion energy which ends up in higher final D concentration and retention as compared to experiments with lower D flux and energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.