Abstract

Climate analysis at relevant time scales is important for water resources management, agricultural planning, flood risk assessment, ecological modeling, and climate change adaptation. This study analyzes the spatiotemporal variability of climate on rainfall distribution for the Hare catchment of Ethiopia. Numerous hydroclimatic variables and scenarios were developed to assess the pattern of rainfall during different seasons. The average annual precipitation varies between −37.3%, +33.1%, and −38.2%, +61.2%, for RCP 4.5 and RCP 8.5, respectively. The anticipated declines in mean seasonal rainfall changes for the Bega and Belg seasons range from −69.6% to 88.4% and from −60.6% to 15.2% for RCP 4.5 and RCP 8.5, respectively. Climate models predict that the average periodic precipitation considered for the Kiremt season will vary from −12.1% to 1.33%. The Belg, Kiremt, and Bega seasons will likely see a 28.2%, 12.2%, and 22.6% drop in mean seasonal precipitation, respectively. The decrease in stream flow accompanied by the aforementioned climate scenarios (RCP 4.5 and RCP 8.5) can be as high as 19.6% and 6.7%, respectively. Also, the amount of discharge will reduce in the near future because of a substantial reduction in rainfall and a rise in evapotranspiration in the catchment. This decline in stream flow has its own effect on the future availability of water resources. The research finding is vital to environmental protection authority, decision makers, and scientific community to undertake climate change adaption techniques for rain scare areas. A program combined with multi-RCMs to evaluate climate change effects on hydrometeorology generated a novel approach to this research with appropriate adaptation mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.