Abstract

LiNO3 has been widely used as an effective electrolyte additive in lithium-sulfur (Li-S) batteries to suppress the polysulfide shuttle effect. To better understand the mechanism of suppressed shuttle effect by LiNO3, herein we report a comprehensive investigation of the influence of LiNO3 additive on the formation process of the solid electrolyte interphase (SEI) layer on lithium anode of Li-S batteries by operando X-ray absorption spectroscopy (XAS). We observed that a compact and stable SEI layer composed of Li2SO3 and Li2SO4 on top of lithium anode is formed during the initial discharge process due to the synergetic effect of shuttled polysulfides and LiNO3, which can effectively suppress the subsequent reaction between polysulfides in electrolyte and lithium metal and thus result in the alleviation of polysulfide shuttle effect. In contrast, when using electrolyte without LiNO3, the shuttled polysulfides continuously react with lithium metal to form insulating Li2S on lithium anode, leading to the irreversible capacity loss. Our present operando XAS study provides a valuable insight into the important role of LiNO3 for the protection of lithium anodes, which will be beneficial for the further development of new electrolyte additives for high-performance Li-S batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.