Abstract

Hierarchical pores are important structural components of the bone tissue and are closely related to angiogenesis, nutrient transport, and metabolism involved in the repair of a bone defect. Here, we fabricated a composite scaffold having a hierarchical structure, based on micro-nano bioactive glass (MNBG) incorporated into poly (lactic-co-glycolic acid) (PLGA), and with camphene as a pore-forming agent for bone repair. The results showed that camphene formed abundant micropores in the walls of large pores, resulting in hierarchical pore structures ranging from a few microns to a hundred microns. Moreover, there was 2–3 folds increased in compressive modulus and the scaffolds showed a stable degradation rate and a higher degree of apatite crystallization than ordinary porous scaffolds. The results of in vitro studies showed that, when compared to ordinary porous scaffolds, PLGA-MNBG scaffolds with multi-holes could better promote the proliferation of bone marrow mesenchymal stem cells (BMSCs) and the expression of angiogenic marker (CD31) of human umbilical vein endothelial cells (HUVECs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call