Abstract

Management of diabetic wounds presents a global health challenge due to elevated levels of ROS in the wound microenvironment, persistent dysregulation of inflammation modulation, and limitations in commercially available dressings. Addressing this issue, we have developed a pH-responsive and glucose-sensitive multifunctional hydrogel dressing that dynamically responds to the wound microenvironment and enables on-demand drug release. The dressing incorporates a matrix material based on aminophenylboronic acid-functionalized alginate and a polyhydroxy polymer, alongside an enhancer phase consisting of self-assembled metal-phenol coordination nanospheres formed by tannic acid and iron ions. Using the dynamic borate ester bonds and catechol-metal ion coordination bonds, the dressing exhibits remarkable shape adaptability, self-healing capability, tissue adhesiveness, antioxidant activity, and photothermal responsiveness, without additional curatives or crosslinking agents. As a wound dressing, it elicits macrophage polarization towards an anti-inflammatory phenotype while maintaining long-lasting antimicrobial effects. In a diabetic mouse model of full-thickness wound infections, it effectively mitigated inflammation and vascular damage, significantly expediting the wound healing process with a commendable 97.7% wound closure rate. This work provides a new direction for developing multifunctional smart hydrogel dressings that can accelerate diabetic wound healing for human health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.