Abstract
Pyrethroids are used widely as insecticides both in agriculture and in households. A cellular target of pyrethroids is the sodium channel in the membrane. In the present study, the activity of the membrane bound integral protein ATPase was studied as a biomarker for the membrane effect of the pyrethroids permethrin and cypermethrin. Male Sprague–Dawley rats were used for cerebral synaptosome preparation. The isolation of synaptosomes was performed with the Percoll gradient method. Both total ATPase and Mg 2+ activated ATPase were studied by determining inorganic phosphate liberated from the substrate ATP. One hour exposure to permethrin (Biokill) and cypermethrin (Ripcord) insecticide products affected ATPase activities. The activity of Na +, K + ATPase decreased dose-dependently in 10–50 μM concentrations of permethrin, and Mg 2+ activated ATPase increased over twofold in the same concentrations of the active components. The effect of the cypermethrin compound Ripcord was not clearly dose-dependent. The activity of total ATPase was almost entirely lost in the concentrations of 100 μM of permethrin and cypermethrin. The results support the idea that membrane ATPases are one target of the neurotoxic effect of pyrethroid compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.