Abstract

The orbital symmetry of the band structure of 2H-WSe2(0 0 0 1) has been investigated by means of angle-resolved photoelectron spectroscopy (ARPES) and density functional theory (DFT). The WSe2(0 0 0 1) experimental band structure is found, by ARPES, to be significantly different for states of even and odd reflection parities along both the – and – lines, in good agreement with results obtained from DFT. The light polarization dependence of the photoemission intensities from the top of the valence band for bulk WSe2(0 0 0 1) is explained by the dominance of W 5 states around the -point and W 5dxy states around the -point, thus dominated, respectively, by states of even and odd symmetry, with respect to the – line. The splitting of the topmost valence band at , due to spin–orbit coupling, is measured to be 0.49 ± 0.01 eV, in agreement with the 0.48 eV value from DFT, and prior measurements for the bulk single crystal WSe2(0 0 0 1), albeit slightly smaller than the 0.513 ± 0.01 eV observed for monolayer WSe2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call