Abstract
In relativistic quantum chemical calculation of molecules, where the spin-orbit interaction is included, the electron orbitals possess both the double point group symmetry and the time-reversal symmetry. If symmetry adapted functions are employed as the basis functions of electron orbitals, it would allow a significant reduction of the computational expense. The point group symmetry adapted functions can be obtained by the group projection operators via its actions on the atomic orbital functions. We have proposed an efficient and simple method to obtain all irreducible representation matrices, which are the basis of the group projection operators, of any finite double point group. Both double point group symmetry and time-reversal symmetry are automatically imposed on the representation matrices. This is achieved by the symmetrized random matrix (SRM) approach, where the SRM is constructed in the regular representation space of a finite group and the eigenfunctions of SRM provide all irreducible representation matrices of the given point group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.