Abstract

The rolling contact problem involving circular cylinders is at the heart of numerous industrial processes, and critical to any elastohydrodynamic lubrication analysis is an accurate knowledge of the associated contact pressure for the static dry problem. In a recent article [1] the authors have obtained new horizontal pressure distributions, both exact and approximate for various problems involving the symmetrical contact of circular elastic cylinders. In [1] it is assumed that only the circumferential horizontal displacement is prescribed in the contact region while the vertical circumferential displacement is left arbitrary and is assumed to take on whatever value is predicted by the deformation. The advantage of this assumption is that the problem reduces to a single singular integral equation which by transformations can be simplified to an integral equation involving the standard finite Hilbert transform. Here we consider the more general displacement boundary value problem within the contact region, and to be specific we examine the problem with zero vertical circumferential displacement and prescribed horizontal circumferential displacement. The solution of this problem involves two coupled singular integral equations for the horizontal and vertical pressure distributions. Basic equations and some approximate analytical solutions are obtained for symmetrical contact of circular elastic cylinders by both parallel plates and circular cylinders which are either rigid or elastic. Numerical results for the approximate analytical solutions are given for contact by rigid parallel plates and rigid circular cylinders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call