Abstract
The symmetric hydrogen exchange reaction OH + H2O → H2O + OH has been studied using the "gold standard" CCSD(T) method with the correlation-consistent basis sets up to aug-cc-pV5Z. The CCSDT and CCSDT(Q) methods were used for the final energic predictions. Two entrance complexes and two transition states on the H3O2 potential surface were located. The vibrational frequencies and the zero-point vibrational energies of these stationary points for the reaction are reported. The entrance complex H2O···HO is predicted to lie 3.7 kcal mol-1 below the separated reactants, whereas the second complex HOH···OH lies only 2.1 kcal mol-1 below the separated reactants. The classical barrier height for the title reaction is predicted to be 8.4 kcal mol-1, and the transition state between the two complexes is only slightly higher than the second complex. We estimate a reliability of ±0.2 kcal mol-1 for these predictions. The capabilities of different density functional theory methods is also tested for this reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.