Abstract
We investigated the interactions between the cold-water coral Lophelia pertusa and its associated polychaete Eunice norvegica by quantifying carbon (C) and nitrogen (N) budgets of tissue assimilation, food partitioning, calcification and respiration using 13C and 15N enriched algae and zooplankton as food sources. During incubations both species were kept either together or in separate chambers to study the net outcome of their interaction on the above mentioned processes. The stable isotope approach also allowed us to follow metabolically derived tracer C further into the coral skeleton and therefore estimate the effect of the interaction on coral calcification. Results showed that food assimilation by the coral was not significantly elevated in presence of E. norvegica but food assimilation by the polychaete was up to 2 to 4 times higher in the presence of the coral. The corals kept assimilation constant by increasing the consumption of smaller algae particles less favored by the polychaete while the assimilation of Artemia was unaffected by the interaction. Total respiration of tracer C did not differ among incubations, although E. norvegica enhanced coral calcification up to 4 times. These results together with the reported high abundance of E. norvegica in cold-water coral reefs, indicate that the interactions between L. pertusa and E. norvegica can be of high importance for ecosystem functioning.
Highlights
In the North East Atlantic, the scleractinian cold-water coral Lophelia pertusa is the dominating reef forming species
Absence and presence of corals, Artemia was the dominant N-source for E. norvegica, accounting for 87% of total assimilated N in polychaete tissue when corals were present to 91% when corals were absent (PERMANOVA p#0.02, Fig. 2b)
In this study we quantified the qualitative observations of the interaction between E. norvegica and L. pertusa to infer the importance of this interaction for cold-water coral ecosystems
Summary
In the North East Atlantic, the scleractinian cold-water coral Lophelia pertusa is the dominating reef forming species. M22, based on our data and the following references [10,11]) observed in close contact with the cold-water coral L. pertusa is the polychaete Eunice norvegica [12,13,14]. It forms parchment-like tubes within living coral branches which later are calcified by its coral host [15]. No data is available to quantify this aspect of the relationship between coral and polychaete
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.