Abstract

The elliptic potential Korteweg-de Vries lattice system is a multi-component extension of the lattice potential Korteweg-de Vries equation, whose soliton solutions are associated with an elliptic Cauchy kernel (i.e., a Cauchy kernel on the torus). In this paper we generalize the class of solutions by allowing the spectral parameter to be a full matrix obeying a matrix version of the equation of the elliptic curve, and for the Cauchy matrix to be a solution of a Sylvester type matrix equation subject to this matrix elliptic curve equation. The construction involves solving the matrix elliptic curve equation by using Toeplitz matrix techniques, and analysing the solution of the Sylvester equation in terms of Jordan normal forms. Furthermore, we consider the continuum limit system associated with the elliptic potential Korteweg-de Vries system, and analyse the dynamics of the soliton solutions, which reveals some new features of the elliptic system in comparison to the non-elliptic case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call