Abstract

Regulatory programs that control the specification of serotonergic neurons have been investigated by genetic mutant screens in the nematode Caenorhabditis elegans. Loss of a previously uncloned gene, ham-3, affects migration and serotonin antibody staining of the hermaphrodite-specific neuron (HSN) pair. We characterize these defects here in more detail, showing that the defects in serotonin antibody staining are paralleled by a loss of the transcription of all genes involved in serotonin synthesis and transport. This loss is specific to the HSN class as other serotonergic neurons appear to differentiate normally in ham-3 null mutants. Besides failing to migrate appropriately, the HSNs also display axon pathfinding defects in ham-3 mutants. However, the HSNs are still generated and express a subset of their terminal differentiation features in ham-3 null mutants, demonstrating that ham-3 is a specific regulator of select features of the HSNs. We show that ham-3 codes for the C. elegans ortholog of human BAF60, Drosophila Bap60, and yeast Swp73/Rsc6, which are subunits of the yeast SWI/SNF and vertebrate BAF chromatin remodeling complex. We show that the effect of ham-3 on serotonergic fate can be explained by ham-3 regulating the expression of the Spalt/SALL-type Zn finger transcription factor sem-4, a previously identified regulator of serotonin expression in HSNs and of the ham-2 Zn transcription factor, a previously identified regulator of HSN migration and axon outgrowth. Our findings provide the first evidence for the involvement of the BAF complex in the acquisition of terminal neuronal identity and constitute genetic proof by germline knockout that a BAF complex component can have cell-type-specific roles during development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.