Abstract

AbstractThe Swendsen–Wang algorithm is a sophisticated, widely‐used Markov chain for sampling from the Gibbs distribution for the ferromagnetic Ising and Potts models. This chain has proved difficult to analyze, due in part to its global nature. We present optimal bounds on the convergence rate of the Swendsen–Wang algorithm for the complete ‐ary tree. Our bounds extend to the non‐uniqueness region and apply to all boundary conditions. We show that the spatial mixing conditions known asvariance mixingandentropy mixingimply spectral gap and mixing time, respectively, for the Swendsen–Wang dynamics on the ‐ary tree. We also show that these bounds are asymptotically optimal. As a consequence, we establish mixing for the Swendsen–Wang dynamics forallboundary conditions throughout (and beyond) the tree uniqueness region. Our proofs feature a novel spectral view of the variance mixing condition and utilize recent work on block factorization of entropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.