Abstract

The swelling and dissolution phenomena of microcrystalline cellulose (MCC) were investigated in subcritical and supercritical water. Commercial MCC was treated in water at temperatures of 250–380 °C and a pressure of 250 bar for 0.25–0.75 s. As reaction products, undissolved but depolymerised cellulose residue, short-chain cellulose precipitate, water-soluble cello-oligosaccharides and monosaccharides, as well as their degradation products, were detected. The highest yield of the cellulose II precipitate was obtained after a reaction time of 0.25 s at 360 °C. Our hypothesis was that if the crystallites were swollen, the depolymerization pattern would be that of homogeneous reaction and the cellulose Iβ to cellulose II transformation would be observed. The changes in the structure of the undissolved cellulose residue were characterised by size exclusion chromatography, wide-angle X-ray scattering and 13C solid-state NMR techniques. In many cases, the cellulose residue samples contained cellulose II; however, due to experimental limitations, it remains unclear whether it was formed through the swelling of crystallites or the partial readsorption of the dissolved cellulose fraction. The molar mass distributions of untreated MCC and after low intensity treatments showed a bimodal shape. After high intensity treatments the high molar mass chains disappeared which indicated a complete swelling or dissolution of the crystallites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call