Abstract

We continue the investigation of F-term axion monodromy inflation in string theory, while seriously taking the issue of moduli stabilization into account. For a number of closed and open string models, we show that they suffer from serious control issues once one is trying to realize trans-Planckian field excursions. More precisely, the flux tuning required to delay the logarithmic scaling of the field distance to a trans-Planckian value cannot be done without leaving the regime where the employed effective supergravity theory is under control. Our findings are consistent with the axionic extension of the Refined Swampland Conjecture, stating that in quantum gravity the effective theory breaks down for a field excursion beyond the Planck scale. Our analysis suggests that models of F-term axion monodromy inflation with a tensor-to-scalar ratio r ≥ O(10−3) cannot be parametrically controlled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.