Abstract

Rice (Oryza sativa L.) is an important agricultural commodity in Indonesia. The combination of stability analysis on yields was considered accurate in selecting superior genotypes. The objectives of this study were as follows: identify the effects of genotypes, the environment, and their interactions (GEIs) on the yields of Fe-tolerant rice; select superior genotypes (stable and high yields) under diverse environment conditions in Indonesia; and determine the mega-environments (MEs) and representative environments for Fe-tolerant rice development. Fifteen genotypes of Fe-tolerant rice were used for this study. Field experiments were conducted at six experimental fields in Indonesia using a randomized block design with two replications. A combined analysis of variance (ANOVA) was used to determine the effect of genotypes, the environment, and their interactions on Fe-tolerant rice yields. Parametric, non-parametric, AMMI (additive main effects and multiplicative interaction), GGE biplot, and SI (sustainability index) measurements were used to determine the superior genotypes. GGE biplot was also used to determine MEs and representative environments. The measurement results showed that genotypes, the environment, and their interactions significantly affected rice yields with contributions of 13.30%, 35.78%, and 50.92%, respectively. One superior Fe-tolerant rice genotype (stable and high yield) was selected based on all measurements, namely G4 (B14316E-KA-4). In this experiment, two MEs were generated. Lampung was identified as a representative environment for the development of superior genotypes. The results of this study can be used as a consideration in the release and development of new superior varieties of Fe-tolerant rice in Indonesia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call