Abstract

This paper deals with hydrodynamic forces of a single semisubmerged circular cylinder containing a concentric cylindrical hole constrained to move in a water domain of finite depth. The fluid domain is divided into inner and outer regions. The Laplace equations governing velocity potentials for the three regions are solved by separation of variables and expressed in terms of eigenfunctions of the resulting equations which satisfy appropriate boundary conditions. Continuity of pressure and velocity at the interface of the regions provides the necessary equations from which the velocity potentials, pressures and forces are obtained. Numerical results are plotted for added mass and damping coefficients for different draft-to-depth and radius-to-depth values and for various wave amplitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.