Abstract

Despite the industrial importance of copper oxides, the nature of the (100) surface of Cu2O has remained poorly understood. The surface has previously been subject to several theoretical and experimental studies, but has until now not been investigated by atomically resolved microscopy or high-resolution photoelectron spectroscopy. Here we determine the atomic structure and electronic properties of Cu2O(100) by a combination of multiple experimental techniques and simulations within the framework of density functional theory (DFT). Low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) characterized the three ordered surface structures found. From DFT calculations, the structures are found to be energetically ordered as (3,0;1,1), c(2 × 2), and (1 × 1) under ultrahigh vacuum conditions. Increased oxygen pressures induce the formation of an oxygen terminated (1 × 1) surface structure. The most common termination of Cu2O(100) has previously been described by a (3√2 × √2)R45° unit cell exhibiting a LEED pattern with several missing spots. Through atomically resolved STM, we show that this structure instead is described by the matrix (3,0;1,1). Both simulated STM images and calculated photoemission core level shifts compare favorably with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call