Abstract
For more than a decade, evidence has been accumulating that points to the fact that the microscopic roughness of the footwear soling surface is a major determinant of slip-resistance on lubricated surfaces, but conclusive experimental proof has been lacking. This article describes an experiment in which five pairs of shoes were soled with the same rubber compound. Four of the pairs were abraded by different grades of grit to produce a range of roughness values. The coefficient of friction (CoF) of the five solings was then measured repeatedly by the walking traction method on wet surfaces including glazed wall tiles, vinyl asbestos coated with the wax floor polish, and both sides of a sheet of float glass. The Kruskal-Wallis statistical test proved beyond doubt that the soling roughness is a major factor in determining the CoF of this rubber soling material; p < 10 −5. Nearly all of the grip was due to surface roughness of the soling material on these atypically smooth floors, although the surface roughness of the floors also had a significant effect on CoF; p < 0.003. Float glass is shown to be a promising reference floor material for the measurement of CoF of footwear; there was no statistical difference between results for the two sides of the glass sheet. Float glass could be used in the development of a standard CoF test method because new sheets of glass from the same manufacturer are identical and extremely smooth. The specification of CoF values for solings/floors combinations in lubricated conditions is of little value unless associated with roughness measurements and knowledge of how wear will affect the surface roughness of the sole. This article reports the first evidence that any specification of flooring by measuring CoF based on dry surfaces could lead to an increase in the number of injuries caused by slipping on the wet surfaces. Published by Elsevier Science Ltd
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.