Abstract

AbstractThe oceanic surface mixed layer heat budget in the central equatorial Indian Ocean is calculated from observations at two mooring sites (0°S 79°E and 1.5°S 79°E) during three active and calm phases of Madden–Julian Oscillation (MJO) events between September 2011 and January 2012. At both mooring locations, the surface mixed layer is generally heated during MJO calm phases. During MJO active phases at both mooring locations, the surface mixed layer is always cooled by the net surface heat flux and also sometimes by the turbulent heat flux at the bottom of the surface mixed layer. The turbulent heat flux at the bottom of the surface mixed layer, however, varies greatly among different MJO active phases and between the two mooring locations. A barrier layer exerts control on the turbulent heat flux at the base of the surface mixed layer; we quantify this barrier layer strength by a “barrier layer potential energy,” which depends on the thickness of the barrier layer, the thickness of the surface mixed layer, and the density stratification across the isothermal layer. During one observed MJO active phase, a strong turbulent heat flux into the mixed layer was diagnosed, despite the presence of a 10−20 m thick barrier layer. This was due to the strong shear across the barrier layer driven by the westerly winds, which provided sufficient available kinetic energy to erode the barrier layer. To better simulate and predict net surface heat fluxes and the MJO, models must estimate the oceanic barrier layer potential energy, background shear, stratification, and surface forcing accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.