Abstract

The genus Mycobacterium includes obligate pathogens as well as opportunistic and non-pathogenic species ubiquitous in the environment. Mycobacteria have a unique cell wall abundant in lipids. Here we investigated cytokine production by human peripheral blood mononuclear cells (PBMC) in response to the opportunistic mycobacteria Mycobacterium avium and Mycobacterium abscessus, the non-pathogenic Mycobacterium gordonae and extracted surface lipids from the three species. The cytokine response elicited by mycobacteria, regardless of their pathogenic potential, differed distinctly from that induced by control Gram-positive (Enterococcus faecalis, Streptococcus mitis) and Gram-negative (Escherichia coli) bacteria. Mycobacteria induced no IL-12 and less TNF and IFN-γ compared with conventional Gram-positive bacteria. IL-10 was induced by all the mycobacteria and this production was partly responsible for the down-regulation of IL-12 and IFN-γ. The capacity of the Gram-positive bacterium E. faecalis to induce IL-12, as well as TNF and IFN-γ, in human PBMCs was strongly reduced when mycobacterial lipids were added. The mycobacterial surface lipids down-regulated the production of IL-12 and IFN-γ without eliciting IL-10 production. Our results show that mycobacteria evade triggering production of phagocyte activating cytokines (IL-12, TNF and IFN-γ) and that the mycobacterial cell wall surface lipids may play a significant role in this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call