Abstract

A new methodology was developed to study the cell-surface glycoproteins of cultured human skin fibroblasts. This was based on the binding of a variety of biotinyl-lectins to nitrocellulose electrophoretic transfers of total fibroblast lysates after separation in sodium dodecyl sulphate/polyacrylamide gels, followed by reaction with avidin-biotinyl-peroxidase complexes and detection with 3,3'-diaminobenzidine. The technique proved to be very sensitive and a large number of glycoproteins were detected by binding of concanavalin A and wheat-germ agglutinin. Binding of peanut agglutinin and to a lesser extent of Ricinus communis agglutinin I were found to be dependent on prior removal of sialic acid residues from the glycoproteins. Since by treatment of intact viable cells with neuraminidase only external sialic acid residues were removed, peanut agglutinin and Ricinus communis agglutinin I could thus be utilized for selective detection of cell-surface glycoproteins. Also, because peanut agglutinin was known to bind preferentially to oligosaccharides of the O-glycosidic type, and Ricinus communis agglutinin I to those of the N-glycosidic type, the two lectins were complementary in displaying the surface glycoproteins and in providing information about their oligosaccharide composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.