Abstract

Planetary surface compositions are fundamental to an understanding of both the interior activity through differentiation processes and volcanic activity and the external evolution through alteration processes and accumulations of volatiles. While the Moon has been studied since early on using ground-based instruments and returned samples, observing the surface composition of the terrestrial planets did not become practical until after the development of orbital and in situ missions with instruments tracking mineralogical and elemental variations. The poorly evolved, atmosphere-free bodies like the Moon and Mercury enable the study of the formation of the most primitive crusts, through processes such as the crystallization of a magma ocean, and their volcanic evolution. Nevertheless, recent studies have shown more diversity than initially expected, including the presence of ice in high latitude regions. Because of its heavy atmosphere, Venus remains the most difficult planetary body to study and the most poorly known in regards to its composition, triggering some interest for future missions. In contrast, Mars exploration has generated a huge amount of data in the last two decades, revealing a planet with a mineralogical diversity close to that of the Earth. While Mars crust is dominated by basaltic material, recent studies concluded for significant contributions of more felsic and alkali-rich igneous material, especially in the ancient highlands. These ancient terrains also display widespread outcrops of hydrous minerals, especially phyllosilicates, which are key in the understanding of past climate conditions and suggest a volatile-rich early evolution with implications for exobiology. Recent terrains exhibit a cryosphere with ice-rich landforms at, or close to the surface, of mid- and high latitudes, generating a strong interest for recent climatic variability and resources for future manned missions. While Mars is certainly the planetary body the most similar to Earth, the observation of specific processes such as those linked to interactions with solar wind on atmosphere-free bodies, or with a thick acidic atmosphere on Venus, improve our understanding of the differences in evolution of terrestrial bodies. Future exploration is still necessary to increase humankind’s knowledge and further build a global picture of the formation and evolution of planetary surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call