Abstract

We report on a study to investigate the surface composition of gold–silver nanoparticles (Au/Ag NPs) via electrochemical analysis as a function of Ag thickness and synthetic temperature. Au/Ag NPs were synthesized at hydrothermal temperatures and supported on Vulcan XC-72. The shifts in the surface plasmon resonance (SPR) with an increase in Ag thickness depended on whether the NPs had core/shell or core/alloy morphologies. X-ray photoelectron spectroscopy (XPS) showed different proportions of Au/Ag at various layers of Ag. Cyclic voltammetry (CV) of carbon-supported Au/Ag NPs (Au/Ag/C) was used to probe the nanostructure’s surface via methanol oxidation reaction (MOR) in alkaline solution. The CVs demonstrated the differences in the redox reactions between the core/shell and core/alloy morphologies. This study shows the systematic electrochemical investigation of Au/Ag core/alloy interfacial composition in methanol oxidation reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.