Abstract

We report on a computational study of the clean and oxygen-covered Rh(110) surface, based on density-functional theory within the local-density approximation. We have used plane-wave basis sets and Vanderbilt ultra-soft pseudopotentials. For the clean surface, we present results for the equilibrium structure, surface energy and surface stress of the unreconstructed and (1 × 2) reconstructed structures. For the oxygen-covered surface we have performed a geometry optimization at 0.5, 1, and 2 monolayer oxygen coverages, and we present results for the equilibrium configurations, workfunctions and oxygen chemisorption energies. At half monolayer coverage, we find that oxygen induces a (1 × 2) reconstruction of the surface, while at one monolayer coverage the chemisorption energy is highest for the unreconstructed surface. Our results are rationalized by a simple tight-binding description of the interaction between the O 2p orbitals and the metal valence states. The resulting bonds are stronger when established with low coordinated metal atoms, and give rise to an effective adsorbate-adsorbate interaction when two oxygen atoms are bound to the same metal orbital.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.