Abstract

This study explored the interplay between the ligand-surface chemistry of colloidal CsPbBr3 nanowires (NWs) and their optical properties. The ligand equilibrium was probed using nuclear magnetic resonance spectroscopy, and by perturbing the equilibrium via dilution, the gradual removal of ligands from the CsPbBr3 surface was observed. This removal was correlated with an increase in the surface defect density, as suggested by a broadening of the photoluminescence (PL) spectrum, a decrease in the PL quantum yield (PLQY), and quenching of the PL decay. These results highlight similar surface binding between the traditional CsPbBr3 quantum dots and our NWs, thereby expanding the scope of well-established ligand chemistry to a relatively unexplored nanocrystal morphology. By controlling the dilution factor, it was revealed that CsPbBr3 NWs achieve a PLQY of 72% ± 2% and a relatively long average PL lifetime of 400 ± 10ns, without relying on additional surface passivation techniques, such as ligand exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.