Abstract
Abstract Observations from the Oregon, northwest Africa, Peru, and northern California shelves are used to examine the characteristics of the surface boundary layer in coastal regions during the upwelling season. The observations from these four regions yield a consistent picture of the structure of the surface boundary layer. Both CTD and moored observations reveal the presence of surface mixed layers that are typically 0–20 m thick with variability at diurnal and subtidal (periods longer than 36 hours) frequencies. The subtidal surface mixed-layer depth variability scales as u*/(NIf)½, where u* = (τS/ρ0)½ is the shear velocity, NI is the buoyancy frequency below the surface mixed layer, and f is the Coriolis frequency. Surprisingly, this relationship indicates that the subtidal variability of surface mixed-layer depth does not depend strongly on either the surface heat flux or advection of heat, both of which are large in coastal upwelling regions. Within the surface mixed layer the cross-shelf current ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.