Abstract
Little is known about the neural substrates controlling circadian rhythms in day-active compared to night-active mammals primarily because of the lack of a suitable diurnal rodent with which to address the issue. The murid rodent, Arvicanthis niloticus, was recently shown to exhibit a predominantly diurnal pattern of activity and body temperature, and may be suitable for research on the neural mechanisms underlying circadian rhythms. This paper describes, in A. niloticus, the anatomy of two neural structures that play important roles in the control of circadian rhythms, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL). Immunohistochemical techniques were used to examine the distribution of neuroactive peptides in the SCN and IGL, and retinal projections to these structures were traced with anterograde transport of the beta subunit of cholera toxin. In A. niloticus, distinct subdivisions of the SCN contained cell bodies with immunoreactive (IR) vasopressin, vasoactive intestinal polypeptide, gastrin-releasing peptide, and corticotropin-releasing factor. The SCN did not contain cell bodies with met-enkephalin-IR and substance P-IR, but did contain fibers with substance P-IR and neuropeptide Y-IR. Retinal fibers were present throughout the SCN, but were most densely concentrated along its ventral edge, particularly in the contralateral SCN. Retinal fibers also extended to a variety of hypothalamic regions outside the SCN, including the supraoptic nucleus and the subparaventricular region. The IGL contained cells with neuropeptide Y-IR and enkephalin-IR cells. Retinal fibers projected to both the ipsilateral and contralateral IGL. The anatomy of the SCN and IGL were compared and contrasted with that previously described for other nocturnal and diurnal species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.