Abstract

The 473 + 5/− 3 Myr Asbestos ophiolite complex of the Quebec Appalachians was formed in a forearc basin and obducted on a margin of Laurentia ~ 460 Myr ago. The complex together with its sedimentary cover is well exposed at Burbank Hill (~ 130 km SW of Québec City) where eight distinct lithologies have been identified: 1) pyroxenites and wehrlites with minor dunitic layers, (2) fractured gabbros, (3) breccia containing gabbro and diabase fragments, (4) polygenic conglomerates, (5) red mudstone/chert/sandstone succession, (6) tuffs with intercalated grey chert, (7) greenish grey mudstones and (8) slates and sandstones of the Saint-Daniel Mélange. The gabbroic and mafic volcanic rocks show the characteristics of arc tholeiites (TiO 2 ~ 0.8–0.85 wt.%) and boninites (TiO 2 < wt. 0.35% and Mg# > 45; (La/Sm) N ~ 1.9–3.3). These rock-types also occur as mafic fragments in the polygenic conglomerate. The mafic fragments (crystals and rocks) within the conglomerate and the ophiolitic sandstones also show the same greenschist facies metamorphism as the mafic igneous rocks of the complex. The conglomerate was probably formed after the forearc crust was fragmented by pre-obduction normal faults. These fault scarps would have promoted the erosion of the oceanic crust, leading to the accumulation of diverse detritus in grabens. The sedimentary lithologies which overlie the conglomerate exhibit a gradual increase in continent-derived material ((La/Sm) N ~ 5 and La/Yb ~ 20) and a decrease in ophiolitic material moving upward in the stratigraphic sequence. The sedimentary rocks at the bottom of the sequence (group 3) are mostly composed of ophiolite material with only 20% of crustal material. They also have a high content of Cr and MgO with values of 350–480 ppm and 5.7–8%, respectively. The rocks of the uppermost part of the pile (group 1) which contain up to 80% crustal material have low abundances of Cr and MgO (30–100 ppm and 2.7–4.5 wt.%). Continental detritus on the top of the Asbestos ophiolite suggests the complex formed near the Laurentian continental margin and that the eroded continental material had access to the basin where the ophiolite was formed. This is consistent with the obduction of the Asbestos and Thetford–Mines ophiolites on the Laurentian margin shortly after their formation. The proximity of thick Laurentian continental crust near the trench could explain why the subduction zone blocked-up soon after the ophiolites formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.