Abstract

ObjectiveWe investigated the suppressive effect of siRNA-mediated co-inhibition of PD-1 and CTLA-4 expression on H22 hepatomas in mice.MethodsMurine H22 cells were cultured in vivo in ICR mice. An allograft tumor model was also established in another ICR mouse group. The tumor-bearing mice were randomly divided into four groups: control, single PD-1 siRNA, single CTLA-4 siRNA, and double PD-1 + CTLA-4 siRNAs. The survival time and physiological condition of the mice were observed after the injection of the siRNAs and placebo. The volume and weight of the solid tumor were measured to assess the inhibition of the tumor. To assess the effects of siRNAs on mouse immune function, the protein levels of IFN-γ and IL-10 in the blood and PD-L1 in the tumor and liver were determined using ELISA, and the mRNA levels of IFN-γ, PD-L1, PD-1, CTLA-4, IL-6 and Survivin in the tumor, liver and spleen were determined using quantitative RT-PCR. The ratios of Bax and Bcl-2 protein were determined via western blot to analyze the effect of siRNAs on tumor cell apoptosis.ResultsThe anti-tumor effect appeared in all groups with siRNA-mediated inhibition. The tumor growth suppression was stronger in the group with double inhibition. The weight and volume of the tumors were significantly lower and the survival rate improved in the three siRNA groups. IFN-γ levels increased but IL-10 levels decreased in the blood of the siRNA group mice compared with the results for the control group. In the tumor and spleen tissue, the IFN-γ levels significantly increased, but in the liver tissue they significantly decreased in the three siRNA groups. The results of quantitative RT-PCR showed that the mRNAs for PD-1 and CTLA-4 were downregulated in spleen tissue in the three siRNA groups, while the PD-L1 mRNA and protein levels increased significantly in the tumor, but decreased in the liver. Survivin and IL-6 mRNA levels decreased in the tumor. Western blot results showed that ratio of Bax and Bcl-2 had significantly increased. These results indicated that downregulating PD-1 and CTLA-4 could increase the body’s immune response and promote apoptosis of tumor cells.ConclusionCo-inhibiting the expressions of PD-1 and CTLA-4 can effectively suppress the growth of H22 hepatoma and promote the apoptosis of tumor cells in mice. Blocking PD-1 and CTLA-4 can improve the vitality of T cells, and improve the immune environment and response.

Highlights

  • Cancer cells can often evade the immune system

  • The results showed that the mRNA levels of Interferon gamma (IFN-γ) and PD-L1 in the tumor of the stranded interference RNA (siRNA) groups had significantly increased compared with the control group (p < 0.05).Survivin and IL-6 expression had decreased (p < 0.05)

  • The results indicated that H22 hepatoma cells had metastasized to the liver in the control group, but not in the siRNA groups. siRNAs blocking the PD-1/PD-L1 or cytotoxic T lymphocyte antigen 4 (CTLA-4)/CD80, /CD86 pathways could reduce the metastasis of tumor cells

Read more

Summary

Introduction

The main factor enabling this escape ability is the presence of negative regulatory receptors on the T-cell surface [1]. Programmed cell death protein-1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) are the most important of these negative regulatory receptors [2]. PD-1 is a member of the CD28 family It is a type I transmembrane protein expressed on the surface of activated T-cell membranes [3]. After the tumor had grown for 6 days, the mice were randomly divided into four equal groups (n = 12): control, siPD-1, siCTLA-4 and siPD-1+ siCTLA-4 groups. Each group was given a different transfection reagent (Entranster-in-vivo, EngreenBiosystem Co., Ltd.) and different siRNA: negative control siRNA, siPD-1, siCTLA-4, or siPD-1 + siCTLA-4 (synthesized by Shanghai GenePharma Co., Ltd.).

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.