Abstract

A nonlinear energy sink (NES) is used to suppress the nonlinear aerothermoelastic response of panels at elevated temperatures. A nonlinear aeroelastic model for a two-dimensional panel with an NES in a supersonic airflow is established using the Galerkin method, with the aerodynamic load being based on first-order piston aerodynamic theory. The model is then used to study the nonlinear dynamic response behavior of a heated panel with an NES to obtain the NES suppression region. The effects of different NES parameters and temperature elevations on the NES suppression region are examined and a design technique is developed to facilitate finding the most suitable combination of parameter values to suppress the nonlinear panel flutter response. The results show that the NES is effective at reducing the aeroelastic response amplitude within a specific range. Varying the installed position, damping, mass ratio and stiffness of the NES will lead to variations in its controlling effect upon the suppression region and the dynamic behavior of the heated panel. An increase in the temperature elevation results in a decrease in the NES suppression region. When the temperature reaches a certain point, the NES suppression region disappears and the NES no longer has any effect on the panel flutter response. Overall, it is found that an NES provides an effect and robust solution, and a wide range of different parameter combinations can be found, that will meet the requirements identified by the proposed design method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call