Abstract

The occurrence of hump instability in pump mode within a pump turbine poses a significant challenge to the safe and stable operation of Pumped Storage Power Plants (PSPP). To achieve more precise numerical simulations, this paper establishes a weakly compressible model of water based on the Tait equation. Using this model, it is discovered that the onset of hump instability is closely linked to an increase in hydraulic losses induced by stalled rotation within the diffuser. Then, a flow control approach employing water injection into the guide vanes of a pump turbine is proposed in order to suppress flow instabilities and optimize the hump region. The findings reveal that the water injection approach can mitigate hydraulic losses, suppress unstable structures, and diminish the pulsation amplitude within the diffuser, ultimately delaying the emergence of the hump region to lower flow mass conditions. This study is helpful in widening the range of the safe and stable operation of pump turbines in pump mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call