Abstract

AbstractIn this paper we study the supersingular locus of the reduction modulopof the Shimura variety for GU(1,s) in the case of an inert primep. Using Dieudonné theory we define a stratification of the corresponding moduli space ofp-divisible groups. We describe the incidence relation of this stratification in terms of the Bruhat–Tits building of a unitary group.In the case of GU(1, 2), we show that the supersingular locus is equidimensional of dimension 1 and is of complete intersection. We give an explicit description of the irreducible components and their intersection behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.