Abstract

Aim of the studyTo better understanding the contribution of coagulation factors to the extent of adenovirus-mediated innate toxicity on the hepatocyte.Material and methodsAdenovirus-36 (AD) and adenovector type 5-GFP (Ad5-GFP) were propagated and titered; then, they were loaded with coagulation factors VII or X. The complex of adenovirus with coagulation factor VII and X were for size and charge parameters. After adding AD-VII and AD-X complexes, the expression levels of innate inflammatory genes including protein kinase R (PKR), interleukin (IL)-1β, IL-8 and IL-18 were measured by Real-time PCR on a hepatocellular carcinoma cell line, HepG2.ResultsThe loading of coagulation factors VII and X on Ad5-GFP enhanced the transduction rate up to 50% and 60% (p < 0.05), respectively, compared to the adenovector alone (30%) (p < 0.05). The formation of the coagulation factor-virus complex leads to multimodal size distribution with an increase in average hydrodynamic size and absolute zeta potential. The qPCR results showed that PKR expression increased significantly after treatment with all adenoviruses. These findings also showed that AD had a significant (p = 0.0152) inflammatory impact on Hep-G2. However, AD which was loaded with FX (AD-X) exhibited the most inflammatory effect (p = 0.0164). Significantly, the expression of IL-1β (p = 0.0041), IL-8 (p = 0.0107) and IL-18 (p = 0.0193) were also enhanced following FX loading. On the other hand, the AD-VII complex showed the least effect of innate immune induction when compared to the negative control (p < 0.05).ConclusionsThe loading of coagulation factors, particularly FX, could enhance the transduction efficiency of Ad5-GFP. Furthermore, adenovirus loaded with FX exhibited more innate toxicity on the hepatocytes, while it was not the case for FVII.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.