Abstract

In this paper, a sol–gel made Ce–O–P catalyst (referred to as Ce–O–P-SG) was employed for selective catalytic reduction (SCR) of NOx with NH3, which was directly compared with two other Ce–O–P samples as synthesized via hydrothermal and coprecipitation routes (referred to as Ce–O–P-HT and Ce–O–P-CP, respectively). Experimental results revealed that the Ce–O–P-SG catalyst yielded a more than 90% NO conversion at 200 °C in the presence of 10 vol % H2O, whereas Ce–O–P-HT and Ce–O–P-CP catalysts only showed 50% and 20% NO conversions under the same conditions, respectively. After subjected to a series of characterization technologies (e.g., XRD, BET-BJH, XPS, NH3-TPD, py-IR, and H2-TPR), it was found that more enriched surface Ce(4+) species were formed except for the two main CePO4 phases (monazite and rhabdophane phases) of the Ce–O–P-SG catalyst compared to the other two samples, resulting in the increase of surficial active oxygen ions content. This could lead to an enhancement in surface acidity and redo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.